--------------------

Contents:


  • Introduction
  • Wing Geometry
  • Forces in Flight
  • Stability Concepts
  • Airfoil Simulator
  • Stall and Spin
  • Beginners' Guide
  • Trainer Design

  • Main Page

  • Fly Electric, amazon.co.uk



      Beginners' Guide

      | First Model | Radio Control | Servos | Batteries | Glow Engines | Pulsejet | Turbines |



    • Electric Motors

      Electric powered model aircraft has gained popularity, mainly because the
      electric motors are more quiet, clean and often easier to start and operate
      than the combustion motors.

      They need batteries to operate and
      despite some developments in this
      area; the batteries still are somewhat
      heavier as energy source compared
      with the gas fuel.

      Thus, the electric flier has to strive to
      build the model as light as possible
      in order to obtain a reasonable wing
      loading and/or a reasonable flight time.


      The electric motor's operation is based on the electromagnetic principle.
      When electric current flows through a coil it creates a magnetic field with a
      strength proportional to the current's value, the number of windings of the coil
      and is inversely proportional to the coil's length.
      The strength of the magnetic field will further increase by introducing a so-called
      ferromagnetic material inside the coil.

      An electromagnetic device only gets magnetic when electric current is applied,
      whereas a permanent magnet doesn't need electric power to be magnetic.

      Both electromagnets and permanent magnets
      have the so-called poles at either end.
      One is called N (north) and the other S (south).
      When two magnets get close together the N
      and the S poles attract, whereas the same
      poles (N N or S S) will repel each other.
      The electric motor functions according to the
      same principle.

      There are two main different motor types used in model aircraft:
      The brushed and the brushless.

      A brushed motor consists mainly of
      a cylindrical metal case containing
      a stator and a rotor.
      The rotor is part of the motor shaft,
      which rotates inside the stator.
      The rotor has several coils (poles)
      that may either have an iron core or
      are coreless.
      The stator consists usually of two
      permanent magnets mounted close
      to the metal case.

      The rotor coils receive electric current via a so-called
      commutator, which is connected to a DC voltage
      through two brushes (hence the name).
      The commutator changes the voltage polarity to the
      coils at a certain instant once every turn of the motor
      shaft, thereby keeping the motor running.
      The motor shaft is supported by two bearings, which
      may be of plastic, porous brass bushes or ball
      bearings (more expensive).

      The coreless motor has the rotor coils not wrapped around an iron core but just
      fastened into shape with glue, which makes the rotor much lighter and faster to
      accelerate and thus suitable for servos.
      Since the coreless don't have iron core they have much less iron losses, which
      make them more efficient than cored motors.
      However, the coreless motors will not stand continuous high RPM and/or loads
      without falling apart.
      That's why they are generally rather small, with low speed and low power.
      As flight power motors the corless are only used with small indoor planes.

      A DC motor converts the electric current into Torque and the voltage into rotations
      per minute (RPM).
      Torque is a twisting force measured at a certain radial distance from the shaft's
      centreline. For example: Newtons*meters (Nm)

      Motor's Output Power (W) = Torque(Nm) * 2p*RPM / 60

      The power consumption of a DC motor (Input Power) is equal to its terminal
      voltage times the current.
      However, every motor has losses, which means that the motor consumes more
      power than it delivers at its shaft.

      The motor's Output Power is equal to the Input Power minus the Power Loss.
      Most of Power Loss is equal to the sum of the Copper Loss plus Iron Loss.

      Copper Loss = Coil's Resistance Rm * Current Iin2
      Iron Loss = Vin * Idle Current Io

      The following equation can also be used to calculate the motor's Output Power:
      Pout = (Vin - Iin * Rm) * (Iin - Io)

      The motor's Efficiency (h) is the ratio of the Output Power to the Input Power:
      % h = 100 * Pout / Pin

      Efficiency is a measure of how much of the Input Power (the power that the battery
      delivers to the motor) is actually used to turn the propeller (Output Power) and how
      much is wasted as heat.
      A motor with higher efficiency delivers more power to the prop, and wastes less.

      Assuming the same current, increasing the voltage increases the motor efficiency
      until the RPM limit is reached above which the efficiency falls.



      A further parameter is the motor's Kv, which refers to the ratio of the RPM to the
      Voltage at the motor's terminals minus the Voltage loss inside the motor due to
      the coil's resistance Rm.

      Kv = RPM / (Vin - Vloss)
      Thus:
      RPM = Kv * (Vin - Vloss)

      And since:
      Vloss = Iin * Rm
      The RPM will decrease as the current Iin (load) increases.

      For instance, a motor with a Kv of 1000, a coil resistance Rm of .04 ohms and
      with a terminal voltage of 8 volts at 12 amps will have the following RPM:
      1000 * (8 - 12 * .04) = 7520 RPM instead of 8000 RPM (if the motor coils had no
      resistance Rm) that means a loss of 480 RPM from the ideal in this case.

      RPM Loss = Kv * (Iin * Rm)

      If a larger propeller is used the current will increase, thereby further decreasing
      the motor's RPM.
      So, in high current applications a low resistance Rm is needed in order to prevent
      too much loss of RPM.

      In reality the coil's resistance Rm increases as the temperature increases, which
      means that the RPM will decrease over time even if the input voltage is constant.

      If the motor shaft is held so that it cannot move at all, it is in stalled condition.
      In such a condition the motor will draw the maximum current possible from the
      battery and will most likely be destroyed.
      The current drawn in stalled condition is calculated according to Ohm's Law:

      Istall = Vin / Rm

      Another parameter is the motor Torque as a function of Current.
      It is called Kt and is expressed in inch-ounces per ampere (imperial units):
      Kt = 1352 / Kv

      The amount of Torque per ampere depends on the motor's Kv.
      The higher the Kv, the lower the Torque per ampere.

      High Kv = Low Torque per ampere
      Low Kv = High Torque per ampere

      Like the actual RPM is less than the ideal due to the resistance Rm, the actual
      torque is also less than the ideal due to the idle (no load) current Io.
      The actual Torque is calculated as follows:
      Torque = Kt * (Iin - Io)

      For the same Torque:
      High Kv - needs more Current
      Low Kv - needs more Voltage

      The motor's Kv is much dependent on the coils’ number of turns. A high number
      of turns gives a low Kv and vice-versa.
      So one may ask, which Kv is the best?
      The answer is; it depends on the sort of plane and on the type of flying.
      For instance:
      For the same power, a lower Kv allows the use of a larger diameter prop, giving
      higher thrust at the expense of top speed, whereas a higher Kv requires a smaller
      prop, spinning it at higher RPM resulting in a higher top speed but in lower thrust.

      So, if you intend to hover, have fast climb, good acceleration, are able to use a
      larger diameter prop and the top speed is not of concern, the low Kv is preferable.

      Increasing the current increases the RPM Loss, but decreases the Torque Loss.
      Motor's maximum efficiency occurs when the RPM loss equals the Torque loss.



      Every motor type has an ideal voltage, current and RPM at which the motor's max
      efficiency is obtained.
      These values are often shown in the manufacturer's data sheets.
      Brushed motors' efficiencies are normally between 30 and 80% depending on the
      type and price.

      To estimate the efficiency of a given Motor click here

      Most motors supplied in kits for beginners have the stator made of low cost
      ferrite magnetic material. They are called ferrite or "can" motors.
      "Can" motors are rather inefficient and cannot be
      opened and serviced like other higher quality motors.
      However they are cheap and most kits will fly just fine
      with these motors, so it's ok to use a "can" motor for
      your first plane.


      "Rare hearth" motors such as
      Cobalt and Neodymium are
      considered to be far superior
      to ferrite motors, but they are
      also much more expensive.

      Unlike ferrite magnets, the "rare
      earth" magnets withstand high
      temperatures without losing their
      magnetic properties.


      Electric motors have several designations such as 280, 300, 400, 480 and 600,
      which refer to the case length and also give an idea of their power and weight.
      For example a 480 motor has about 48mm case length, is heavier and is able to
      deliver more power than a 280 motor.

      Generally a 280 motor is suitable to power models up to 400gr and a 480 motor
      may be suitable to models up to 800gr, while a 600 motor may power models up
      to 1200gr, assuming direct drive (without gearbox reduction).

      As a rule of thumb, the input power for a sports plane (no EDF) should be about
      110 W/kg (50 W/lb) in order to get reasonable flying characteristics.
      Gliders and parkflyers may need much less power, 65 W/kg (30 W/lb), while the
      scale and aerobatics may need much more power, e.g. > 200 W/kg (90 W/lb).
      This assuming that the motor has about 75% efficiency.

      Power/Weight : Estimated Performance (Sports Plane) :
      Watts / lb
      Watts / kg
       

      For wingloading about 60g/sq.dm (20oz/sq.ft)
      However, the power to weight ratio recommended above is by itself not enough
      to guarantee whether the plane will fly at all or its flight performance, as other
      factors have to be taken into account, such as the pitch speed of the propeller,
      which refers to propeller's rpm times the pitch.
      Note that the static rpm is lower than when the model is flying.
      The minimum pitch speed recommended is 2 to 3 times the plane's stall speed.
      The stall speed of an aircraft in mph (both model and full-scale) is approximately
      equal to four times the square root of the wing loading in ounces per square foot.
      To calculate the aircraft's approximate stall speed click here
      To calculate the aircraft's approximate level flight speed click here

      Another factor is the Static Thrust, which refers to how much the aircraft is pulled
      or pushed forward by the power system when the aircraft is stationary.
      The Static Thrust should be at least about 1/3 of the aircraft's weight.
      However, in order to be able to hover (3-D models), the Static Thrust should
      be greater than the plane's weight.
      To estimate the prop's approximate Static Thrust click here
      Note that the Static Thrust alone is not enough to predict how the aircraft will fly,
      as other factors like the prop pitch speed should also be considered.

      Measuring and comparing the propellers' Static Thrust may be misleading, as the
      blades of a given prop may stall, resulting in a low static thrust on the test bench,
      while it may give excellent performance in flight and even outperform others
      that have a better Static Thrust.

      Output Power = Thrust * Pitch Speed

      So, with a given power, the more thrust you have, the less top speed you get.
      In other words, assuming the same power:
      Large diameter & small pitch = more thrust, less top speed (like low gear in a car).
      Small diameter & large pitch = less thrust, more speed (like high gear in a car).

      The prop diameter-to-pitch ratio for sport models should be between 2:1 and 1:1
      In case the pitch is too high related to diameter, the prop becomes inefficient at
      low forward speed, as when during the take-off and/or climbing.
      At the other end of the scale, a propeller designed for greatest efficiency at take-
      off and climbing (low pitch & large diameter), will accelerate the model very quickly
      from standstill but will give lower top speed.

      The performance of an electric powered model is also greatly affected by the
      batteries' internal resistance.
      The lower the battery's internal resistance, the less restriction it has in delivering
      the needed power.
      For the same capacity, the battery with higher recommended max discharge rate
      has lower internal resistance.

      To estimate the results of a given Motor & Prop combination click here

      A nice program that can help you design your next RC plane by predicting its
      performance and suggesting propellers and gearbox ratios may be found here.
      For further information visit Just Plane Fun.



      Gearboxes are often used to reduce the motor's
      rpm at the propeller shaft, increasing their torque
      and allowing the use of larger propellers.
      Since the propeller blades also are more efficient
      at moderate rpm, this combination is often worth-
      while despite the increased weight.

      Indoors and slow flier models have often a gearbox
      which allows the use of relatively smaller and lighter
      motors improving the slow flight performance and
      prolonging the flight time.
      The drawback is that the top speed is reduced.

      High-speed models such as those powered by Electric Ducted Fans, (EDF) require
      high Kv motors that have max efficiency at high RPM (typical above 25.000 RPM).

            HiModel 65×H58 Ducted Fan

      Some factors have to be taken into account when designing an EDF propulsion
      system, such as the intake (inlet) should have about the same area as the Fan
      Swept Area FSA, in order to prevent efficiency loss. Also care should be taken
      during the design of both the intake (inlet) and the exhaust (outlet) ducting.
      In order to reduce efficiency losses due to turbulence and drag, the duct internal
      surfaces should be as smooth and straight as possible.
      Circles are the best duct cross sections to minimise surface drag.
      The exhaust area is usually about 85 to 95% of FSA for best performance.

      Some examples of
      ducting are shown
      in the pics on right.
           

      For a given power, the EDF propulsion system has often lower thrust/weight ratio
      compared with a conventional propeller system, and some EDFs need to be hand-
      launched or bungee-launched since they can't take-off the ground.
      Once in the air the EDF may reach rather high speed though.

      The flight time of an electric powered model depends on some variables like:
      Aircraft's flight characteristics (based on wing loading and lift), the combination
      motor/propeller, the motor's efficiency (Pout/Pin) and last but not the least, the
      batteries energy/weight ratio.

      Flight time in minutes = (battery capacity / average current drawn) x 60.

      Electric flight models may be built small and lightweight enough to fly inside a
      sports hall.
      They are the so-called Indoor Models, having approx. 75cm wingspan (30") with
      a weight less than 200gr (7oz) and flying no faster than 8-16Km/h (5-10mph).

      The so-called Park Fliers
      are somewhat faster.
      They are often made of
      foam material and may
      fly at speeds anywhere
      from 25Km/h up to about
      40Km/h (16 to 25mph).
      They are rather sensitive
      to strong winds, so it's
      recommended to fly them
      during calm weather.
      For further pictures and
      info about Indoors/Park
      Fliers check: Aeronutz

      From Aspach Electro Meeting - Germany


      Of course, it's also quite
      possible to build much
      bigger electric powered
      aircraft models.

      To see some beautiful
      examples just check
      here and/or here.

      As the motor rpm increases it requires the rotor coils to be energised sooner
      so that they get the full magnetic field strength in time to react with the stator's
      magnetic field.
      Also when the load increases, the magnetic field in the rotor coils increases,
      which interacts with the stator's magnetic field, producing a rotated resultant
      magnetic field.
      Some motors allow the brushes' angle to be changed by the same amount as
      the field rotation, thereby increasing the motor's efficiency under a given load.
      That's called for motor "timing".

      An electric motor may be timed under load by slowly changing the brush holder's
      angle while measuring the current.
      The ideal brush angle is when the motor draws less current.
      There is no fixed ideal timing angle, since the best timing angle changes as the
      motor load and speed changes.
      If the motor has been timed at clockwise rotation it has to be re-timed in case
      the rotation needs to be reversed.
      The motor's direction of rotation may be reversed by inverting the voltage polarity
      at the supply terminals.
      A timed motor gets higher idle current (with no load).

      Brushed motors need some maintenance, since both the brushes and the comm.
      will wear after a while due to the friction.
      Most quality motors allow brush replacement.
      The commutator itself also needs cleaning as it gathers deposits of carbon and
      gunk due to the graphite powder from the brushes.
      It may be cleaned by a very light polishing action with scotchbrite or with a so-
      called commutator stick.
      The gunk can also be cleaned off while the motor is running manually, using a
      few drops of alcohol.
      If commutator is pitted or shows brush skipping and chattering means that it has
      been overheated and got deformed (out of round). It needs to be repaired, as
      polishing will not cure the deformation.

      Brushes are usually made of three different compounds:
      Graphite, Copper and Silver.
      Brushes made of silver are normally used in competitive racing as they have
      low resistance, but they produce the highest commutator wear and also have
      medium brush wear and lubrication. Silver brushes produce sludge that only
      can be removed by lathing the commutator.
      Copper brushes don't produce sludge and work best at high rpm. These
      brushes produce medium commutator wear and have high brush wear and
      low lubrication.
      Graphite brushes produce low commutator wear, have low brush wear and
      high lubrication but have high resistance, which means that they are not suitable
      for racing.

      Usually it's necessary to "break-in" a new brushed motor so that the flat brushes
      get a curved surface and thus increasing the contact area with the commutator.
      Running a motor with new flat brushes at full load will cause a lot of arcing,
      which pits the contact surfaces and degrades performance.
      The "break-in" may be done by running the motor without load (without prop), at
      about 1/2 its rated voltage for about a hour or two. The brushes should get a
      curved surface without sparks/arcing.
      Some high-quality motors do not need to be "broken-in". This will be mentioned
      in the respective motor's manual. In case of doubt, just break it in.

      Sparks that occur between the brushes and the commutator can cause radio
      interference.
      In order to prevent radio interference it is recommended the use of ceramic
      capacitors soldered between each motor terminal and the motor case.
      For extra security against interference, a third capacitor should also be fitted
      between the motor terminals.

      Note: many Graupner Speed xxx motors have the first 2 of these capacitors
      already fitted internally.

      A common way to control the electric motor's speed is by using an Electronic
      Speed Controller (ESC).


      The Electronic Speed Controller is based on Pulse Width Modulation (PWM),
      which means that the motor's rpm is regulated by varying the pulses' duty-cycle
      according to the transmitter's throttle position.



      For example, with the
      throttle at the minimum
      position, there will be no
      pulses, while moving the
      throttle to the middle will
      produce 50% duty-cycle.
      With the throttle at the
      max position the motor
      will get a continuous DC
      voltage.

      Most ESCs have a facility known as Battery Eliminator Circuit (BEC).
      These controllers include a 5V regulator to supply the receiver and servos from
      the same battery that is used to power the motor, thereby eliminating the weight
      of a second battery only to power the radio and servos.
      The motor power is cut-off when the battery voltage falls, for example below 5V.
      This prevents the battery from getting totally flat allowing the pilot to control the
      model when the motor stops.
      Some controllers also include a brake function that prevents the propeller from
      keeping spinning when the motor power is cut-off.
      Electronic Speed Controllers are available in different sizes and weights, which
      depends on their max output current capabilities.
      Another important characteristic of an ESC is the on-resistance of the output
      power switching transistor(s).
      The on-resistance should be as low as possible, since its value is proportional
      to the power loss dissipated by the output transistor(s): P = R x I2

      The on-resistance is normally between approx. 0.012 and 0.0010ohm. The value
      depends on how many output parallel-connected transistors the actual ESC has.
      The higher the current capability the lower the on-resistance should be.
      These figures are normally shown on the ESC data sheet along with the BEC
      voltage cut-off value and the max. output current to the receiver and servos.

      As a safety measure many ESCs have a function that won't allow the motor to
      start running unless the throttle is initially set in the minimum position.
      Another safety device is the so-called arming switch connected between the
      motor and the controller.
      The arming switch should be off until the plane is ready to taxi out on the runway
      or be hand-launched.
      After the flight, the arming switch should be turned off as soon as possible.
      This will prevent the motor from start running in case the throttle stick is moved
      forward unintentionally.

      In order to keep the arming switch contacts in good shape (lowest resistance)
      it's advisable to never switch it on/off under power. This means that the arming
      switch should be only turned on/off when the throttle is in the minimum position.

      The more powerful the motor, the more need for the safety of an arming switch.
      A reasonable approach is using an arming switch on flight models larger than
      speed 400 size (approximately 100 watts and above).

      Large batteries are capable of delivering very high currents when shorted or
      when the propeller gets blocked.
      Such high currents are enough to overheat and melt components/wiring, which
      may lead to a fire.
      Some organisations that provide insurance for modellers require a fuse in
      electrically powered models.
      To choose the correct rating for the fuse just put the largest and highest-pitch
      prop that you expect to fly with. Measure the current draw of your power system
      on the bench and multiply the value by about 1.25.
      This 25% margin should prevent nuisance blows. Find the fuse with a rating at
      or just above this current level.

      Another type of electric motors for model aircraft are the so-called brushless.
      These motors are little more expensive
      but they have higher efficiency.
      Typically between 80 to 90%.
      Since they have no brushes, there
      is less friction and virtually no parts
      to wear, apart from the bearings.
      HiModel 5916KV inrunner Brushless Motor

      Unlike the DC brushed motor, the stator of the
      brushless motor has coils while the rotor consists
      normally of permanent magnets.
      The stator of a conventional (inrunner) brushless
      motor is part of its outer case, while the rotor
      rotates inside it.
      The metal case acts as a heat-sink, radiating the
      heat generated by the stator coils, thereby keeping
      the permanent magnets at lower temperature.



      They are 3-phase AC synchronous motors.
      Three alternated voltages are applied to the
      stator's coils sequentially (by phase shift)
      creating a rotating magnetic field which is
      followed by the rotor.

      It's required an electronic speed controller specially designed for the brushless
      motors, which converts the battery's DC voltage into three pulsed voltage lines
      that are 120o out of phase.
      The brushless motor's max rpm is dependent on the 3-phase's frequency and on
      the number of poles: rpm = 2 x frequency x 60/number of poles.
      Increasing the number of poles will decrease the max rpm but increase the torque.



      A brushless motor's direction of rotation can be reversed by just swapping two
      of the three phases.

      Earlier speed controllers needed an additional set of smaller wires connected to
      the motors' internal sensors in order to determine the rotor position to generate
      the right phase sequence.
      New controllers read the so-called "back EMF" from each phase, which allows
      the motor to be controlled without the need of the extra wires and sensors.
      These new controllers are called "sensorless" and can be used to control motors
      with or without internal sensors.

      At less than full throttle the 3-phase pulses are chopped at a fixed frequency with
      a duty-cycle depending on the throttle position. At full throttle the phase pulses are
      no longer chopped giving the max rpm and torque.
      The ESC's 3-phase actual output frequency and thus the motor's rpm depend on
      motor's Kv (rpm / volt), the actual load and the voltage applied, as the ESC needs
      the EMF positioning pulses back from the motor before it sends the output pulses.

      Many brushless ESC allow the user to set the Electronic Advance Timing.
      High advance timing (hard timing) is suitable for high pole count motors (above 6
      poles, such as Jeti, Mega, Plettenberg).
      High advance timing gives more output power at expense of efficiency.
      Low advance timing (soft timing) is suitable for low pole count motors. It gives
      higher efficiency with some loss of output power and is recommended when long
      run-time is the primary goal.

      A recent type of brushless motor is the so-called
      "outrunner".
      These motors have the rotor "outside" as part
      of a rotating outer case while the stator is
      located inside the rotor.
      This arrangement gives much higher torque
      than the conventional brushless motors, which
      means that the "outrunners" are able to drive
      larger and more efficient propellers without the
      need of gearboxes.
      1290KV Outrunner Brushless Motor





      << Previous Page